n-person Session 7

February 22, 2024

PMAP 8521: Program evaluation Andrew Young School of Policy Studies

Plan for today

p-values and confidence intervals

Matching and IPW

What exactly is a data generating process?

Can we make another DAG together?

The opera!

Randomness

How do we use random.org for things in R?

Are the results from p-hacking actually a threat to validity?

Is a little exploratory p-hacking okay?

Do people actually post their preregistrations?

See this and this for examples

See this

Do you have any tips for identifying the threats to validity in articles since they're often not super clear?

Especially things like spillovers, Hawthorne effects, and John Henry effects? Using a control group of some kind seems to be the common fix for all of these issues.

What happens if you can't do that? Is the study just a lost cause?

p-values and confidence intervals

In the absence of *p*-values, I'm confused about how we report... significance?

Imbens and *p*-values

Nobody really cares about *p*-values

Decision makers want to know a number or a range of numbers some sort of effect and uncertainty

Nobody cares how likely a number would be in an imaginary null world!

Imbens's solution

Report point estimates and some sort of range

"It would be preferable if reporting standards emphasized confidence intervals or standard errors, and, even better, Bayesian posterior intervals."

Point estimate

The single number you calculate (mean, coefficient, etc.)

Greek, Latin, and extra markings

Statistics: use a sample to make inferences about a population

Letters like β_1 are the **truth**

Letters with extra markings like $\hat{\beta}_1$ are our **estimate** of the truth based on our sample

Letters like X are **actual data** from our sample

Letters with extra markings like \bar{X} are **calculations** from our sample

Estimating truth

$\textbf{Data} \rightarrow \textbf{Calculation} \rightarrow \textbf{Estimate} \rightarrow \textbf{Truth}$

X

Data	X	
Calculation	$ar{X} = rac{\sum X}{N}$	
Estimate	$\hat{oldsymbol{\mu}}$	
Truth	μ	

$$ar{X} = \hat{\mu}$$

 $ightarrow ar{X}
ightarrow \hat{\mu} \xrightarrow{\hspace{0.1cm} ext{ bopefully } e$

Population parameter

Truth = Greek letter

An single unknown number that is true for the entire population

Proportion of left-handed students at GSU

Median rent of apartments in Atlanta

Proportion of red M&Ms produced in a factory

Treatment effect of your program

Samples and estimates

We take a sample and make a guess

This single value is a *point estimate*

(This is the Greek letter with a hat)

Variability

You have an estimate, but how different might that estimate be if you take another sample?

Left-handedness

You take a random sample of 50 GSU students and 5 are left-handed.

If you take a different random sample of 50 GSU students, how many would you expect to be left-handed?

3 are left-handed. Is that surprising?

40 are left-handed. Is that surprising?

Nets and confidence intervals

How confident are we that the sample picked up the population parameter?

Confidence interval is a net

We can be X% confident that our net is picking up that population parameter

If we took 100 samples, at least 95 of them would have the true population parameter in their 95% confidence intervals

A city manager wants to know the true average property value of single-owner homes in her city. She takes a random sample of 200 houses and builds a 95% confidence interval. The interval is (\$180,000, \$300,000).

> We're 95% confident that the interval (\$180,000, \$300,000) captured the true mean value

WARNING

It is way too tempting to say "We're 95% sure that the population parameter is X"

People do this all the time! People with PhDs!

YOU will do this too

If you took lots of samples, 95% of their confidence intervals would have the single true value in them

Frequentism

This kind of statistics is called "frequentism"

The population parameter θ is fixed and singular while the data can vary

$P(\text{Data} \mid \theta)$

You can do an experiment over and over again; take more and more samples and polls

Frequentist confidence intervals

"We are 95% confident that this net captures the true population parameter"

> "There's a 95% chance that the true value falls in this range"

Bayesian statistics

 $P(\theta \mid \text{Data})$

$P(\mathbf{H} \mid \mathbf{E}) = rac{P(\mathbf{H}) imes P(\mathbf{E} \mid \mathbf{H})}{P(\mathbf{E})}$

Rev. Thomas Bayes

P(Hypothesis | Evidence) =

 $rac{P(ext{Hypothesis}) imes P(ext{Evidence} \mid ext{Hypothesis})}{P(ext{Evidence})}$

But the math is too hard!

So we simulate!

(Monte Carlo Markov Chains, or MCMC)

Bayesianism and parameters

In the world of frequentism, there's a fixed population parameter and the data can hypothetically vary

In the world of Bayesianism, the data is fixed (you collected it just once!) and the population parameter can vary $P(\text{Data} \mid \theta)$

 $P(\theta \mid \text{Data})$

Bayesian credible intervals

(AKA posterior intervals)

"Given the data, there is a 95% probability that the true population parameter falls in the credible interval"

Intervals

Frequentism

Bayesianism

There's a 95% probability that the range contains the true value There's a 95% probability that the true value falls in this range

Probability of the range

Few people naturally think like this

Probability of the actual value

People *do* naturally think like this!

Thinking Bayesianly

We all think Bayesianly, even if you've never heard of Bayesian stats

Every time you look at a confidence interval, you inherently think that the parameter is around that value, but that's wrong!

> BUT Imbens cites research that that's actually generally okay

Often credible intervals are super similar to confidence intervals

Bayesian inference

Inference without *p***-values!**

Probability of direction

Region of practical equivalence (ROPE)

Point shows median value; thick black bar shows 66% credible interval thin black bar shows 95% credible interval 37 / 53 RCTS

Do we really not control for things in an RCT?

Randomness and arrow deletion

Balance tests

Chelsea Parlett-Pelleriti @ChelseaParlett

Trying to convince someone NOT to do t-tests to compare randomly assigned groups at baseline

no context the good place @nocontexttgp · Mar 10

1:04 PM · Mar 13, 2021 · Twitter for iPhone

Chelsea Parlett-Pelleriti @ChelseaParlett · Mar 13 THE RANDOMIZATION WORKED. RANDOMIZATION DOESN'T MEAN GROUPS WILL ALWAYS BE EQUAL

()

44

 \bigcirc

3

Chelsea Parlett-Pelleriti @ChelseaParlett

1 4

•••

_ו↑,

...

YOU DONT NEED A HYPOTHESIS TEST IF YOU KNOW THE DATA GENERATING PROCESS

1:18 PM · Mar 13, 2021 · Twitter for iPhone

Can you walk through an example of RCTs in class?

Matching and IPW

Can you talk more about propensity scores and "weirdness" weights?

Lecture slide

Why not just control for confounders instead of doing the whole matching/IPW dance?

Do you have to use logistic regression + OLS for IPW?

Which should we use? Matching or IPW?

Can you walk through an example of IPW and matching in class?